
Chapter 4

Continuous distributions

The distributions we have used so far are called empirical distributions
because they are based on empirical observations, which are necessarily
finite samples.

The alternative is a continuous distribution, which is characterized by a
CDF that is a continuous function (as opposed to a step function). Many
real world phenomena can be approximated by continuous distributions.

4.1 The exponential distribution

I’ll start with the exponential distribution because it is easy to work with. In
the real world, exponential distributions come up when we look at a series
of events and measure the times between events, which are called interar-
rival times. If the events are equally likely to occur at any time, the distri-
bution of interarrival times tends to look like an exponential distribution.

The CDF of the exponential distribution is:

CDF(x) = 1− e−λx

The parameter, λ, determines the shape of the distribution. Figure 4.1 shows
what this CDF looks like with λ = 2.

In general, the mean of an exponential distribution is 1/λ, so the mean of
this distribution is 0.5. The median is ln(2)/λ, which is roughly 0.35.
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Figure 4.1: CDF of exponential distribution.

To see an example of a distribution that is approximately exponential, we
will look at the interarrival time of babies. On December 18, 1997, 44 babies
were born in a hospital in Brisbane, Australia1. The times of birth for all 44
babies were reported in the local paper; you can download the data from
http://thinkstats.com/babyboom.dat.

Figure 4.2 shows the CDF of the interarrival times in minutes. It seems to
have the general shape of an exponential distribution, but how can we tell?

One way is to plot the complementary CDF, 1 − CDF(x), on a log-y scale.
For data from an exponential distribution, the result is a straight line. Let’s
see why that works.

If you plot the complementary CDF (CCDF) of a dataset that you think is
exponential, you expect to see a function like:

y ≈ e−λx

Taking the log of both sides yields:

log y ≈ -λx

So on a log-y scale the CCDF is a straight line with slope −λ.

Figure 4.3 shows the CCDF of the interarrivals on a log-y scale. It is not
exactly straight, which suggests that the exponential distribution is only

1This example is based on information and data from Dunn, “A Simple Dataset for
Demonstrating Common Distributions,” Journal of Statistics Education v.7, n.3 (1999).
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Figure 4.2: CDF of interarrival times
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Figure 4.3: CCDF of interarrival times.
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an approximation. Most likely the underlying assumption—that a birth is
equally likely at any time of day—is not exactly true.

Exercise 4.1 For small values of n, we don’t expect an empirical distribution
to fit a continuous distribution exactly. One way to evaluate the quality of
fit is to generate a sample from a continuous distribution and see how well
it matches the data.

The function expovariate in the random module generates random values
from an exponential distribution with a given value of λ. Use it to generate
44 values from an exponential distribution with mean 32.6. Plot the CCDF
on a log-y scale and compare it to Figure 4.3.

Hint: You can use the function pyplot.yscale to plot the y axis on a log
scale.

Or, if you use myplot, the Cdf function takes a boolean option, complement,
that determines whether to plot the CDF or CCDF, and string options,
xscale and yscale, that transform the axes; to plot a CCDF on a log-y scale:

myplot.Cdf(cdf, complement=True, xscale='linear', yscale='log')

Exercise 4.2 Collect the birthdays of the students in your class, sort them,
and compute the interarrival times in days. Plot the CDF of the interar-
rival times and the CCDF on a log-y scale. Does it look like an exponential
distribution?

4.2 The Pareto distribution

The Pareto distribution is named after the economist Vilfredo Pareto, who
used it to describe the distribution of wealth (see http://wikipedia.org/

wiki/Pareto_distribution). Since then, it has been used to describe phe-
nomena in the natural and social sciences including sizes of cities and
towns, sand particles and meteorites, forest fires and earthquakes.

The CDF of the Pareto distribution is:

CDF(x) = 1−
(

x
xm

)−α

The parameters xm and α determine the location and shape of the distri-
bution. xm is the minimum possible value. Figure 4.4 shows the CDF of a
Pareto distribution with parameters xm = 0.5 and α = 1.
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Figure 4.4: CDF of a Pareto distribution.

The median of this distribution is xm21/α, which is 1, but the 95th percentile
is 10. By contrast, the exponential distribution with median 1 has 95th per-
centile of only 1.5.

There is a simple visual test that indicates whether an empirical distribution
fits a Pareto distribution: on a log-log scale, the CCDF looks like a straight
line. If you plot the CCDF of a sample from a Pareto distribution on a linear
scale, you expect to see a function like:

y ≈
(

x
xm

)−α

Taking the log of both sides yields:

log y ≈−α (log x − log xm)

So if you plot log y versus log x, it should look like a straight line with slope
−α and intercept α log xm.

Exercise 4.3 The random module provides paretovariate, which generates
random values from a Pareto distribution. It takes a parameter for α, but
not xm. The default value for xm is 1; you can generate a distribution with a
different parameter by multiplying by xm.

Write a wrapper function named paretovariate that takes α and xm as pa-
rameters and uses random.paretovariate to generate values from a two-
parameter Pareto distribution.

Use your function to generate a sample from a Pareto distribution. Com-
pute the CCDF and plot it on a log-log scale. Is it a straight line? What is
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the slope?

Exercise 4.4 To get a feel for the Pareto distribution, imagine what the world
would be like if the distribution of human height were Pareto. Choosing the
parameters xm = 100 cm and α = 1.7, we get a distribution with a reasonable
minimum, 100 cm, and median, 150 cm.

Generate 6 billion random values from this distribution. What is the mean
of this sample? What fraction of the population is shorter than the mean?
How tall is the tallest person in Pareto World?

Exercise 4.5 Zipf’s law is an observation about how often different words
are used. The most common words have very high frequencies, but there
are many unusual words, like “hapaxlegomenon,” that appear only a few
times. Zipf’s law predicts that in a body of text, called a “corpus,” the dis-
tribution of word frequencies is roughly Pareto.

Find a large corpus, in any language, in electronic format. Count how many
times each word appears. Find the CCDF of the word counts and plot it on a
log-log scale. Does Zipf’s law hold? What is the value of α, approximately?

Exercise 4.6 The Weibull distribution is a generalization of the exponential
distribution that comes up in failure analysis (see http://wikipedia.org/

wiki/Weibull_distribution). Its CDF is

CDF(x) = 1− e−(x/λ)k

Can you find a transformation that makes a Weibull distribution look like a
straight line? What do the slope and intercept of the line indicate?

Use random.weibullvariate to generate a sample from a Weibull distribu-
tion and use it to test your transformation.

4.3 The normal distribution

The normal distribution, also called Gaussian, is the most commonly used
because it describes so many phenomena, at least approximately. It turns
out that there is a good reason for its ubiquity, which we will get to in Sec-
tion 6.6.

The normal distribution has many properties that make it amenable for
analysis, but the CDF is not one of them. Unlike the other distributions
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Figure 4.5: CDF of a normal distribution.

we have looked at, there is no closed-form expression for the normal CDF;
the most common alternative is to write it in terms of the error function,
which is a special function written erf(x):

CDF(x) =
1
2

[
1 + erf

(
x− µ

σ
√

2

)]

erf(x) =
2√
π

∫ x

0
e−t2

dt

The parameters µ and σ determine the mean and standard deviation of the
distribution.

If these formulas make your eyes hurt, don’t worry; they are easy to imple-
ment in Python2. There are many fast and accurate ways to approximate
erf(x). You can download one of them from http://thinkstats.com/erf.

py, which provides functions named erf and NormalCdf.

Figure 4.5 shows the CDF of the normal distribution with parameters µ = 2.0
and σ = 0.5. The sigmoid shape of this curve is a recognizable characteristic
of a normal distribution.

In the previous chapter we looked at the distribution of birth weights in the
NSFG. Figure 4.6 shows the empirical CDF of weights for all live births and
the CDF of a normal distribution with the same mean and variance.

The normal distribution is a good model for this dataset. A model is a useful
simplification. In this case it is useful because we can summarize the entire

2As of Python 3.2, it is even easier; erf is in the math module.
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Figure 4.6: CDF of birth weights with a normal model.

distribution with just two numbers, µ = 116.5 and σ = 19.9, and the resulting
error (difference between the model and the data) is small.

Below the 10th percentile there is a discrepancy between the data and the
model; there are more light babies than we would expect in a normal distri-
bution. If we are interested in studying preterm babies, it would be impor-
tant to get this part of the distribution right, so it might not be appropriate
to use the normal model.

Exercise 4.7 The Wechsler Adult Intelligence Scale is a test that is intended
to measure intelligence3. Results are transformed so that the distribution of
scores in the general population is normal with µ = 100 and σ = 15.

Use erf.NormalCdf to investigate the frequency of rare events in a normal
distribution. What fraction of the population has an IQ greater than the
mean? What fraction is over 115? 130? 145?

A “six-sigma” event is a value that exceeds the mean by 6 standard devia-
tions, so a six-sigma IQ is 190. In a world of 6 billion people, how many do
we expect to have an IQ of 190 or more4?

Exercise 4.8 Plot the CDF of pregnancy lengths for all live births. Does it
look like a normal distribution?

3Whether it does or not is a fascinating controversy that I invite you to investigate at
your leisure.

4On this topic, you might be interested to read http://wikipedia.org/wiki/

Christopher_Langan.
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Compute the mean and standard deviation of the sample and plot the nor-
mal distribution with the same parameters. Is the normal distribution a
good model for this data? If you had to summarize this distribution with
two statistics, what statistics would you choose?

4.4 Normal probability plot

For the exponential, Pareto and Weibull distributions, there are simple
transformations we can use to test whether a continuous distribution is a
good model of a dataset.

For the normal distribution there is no such transformation, but there is an
alternative called a normal probability plot. It is based on rankits: if you
generate n values from a normal distribution and sort them, the kth rankit
is the mean of the distribution for the kth value.

Exercise 4.9 Write a function called Sample that generates 6 samples from a
normal distribution with µ = 0 and σ = 1. Sort and return the values.

Write a function called Samples that calls Sample 1000 times and returns a
list of 1000 lists.

If you apply zip to this list of lists, the result is 6 lists with 1000 values in
each. Compute the mean of each of these lists and print the results. I predict
that you will get something like this:

{−1.2672, −0.6418, −0.2016, 0.2016, 0.6418, 1.2672}

If you increase the number of times you call Sample, the results should con-
verge on these values.

Computing rankits exactly is moderately difficult, but there are numerical
methods for approximating them. And there is a quick-and-dirty method
that is even easier to implement:

1. From a normal distribution with µ = 0 and σ = 1, generate a sample
with the same size as your dataset and sort it.

2. Sort the values in the dataset.

3. Plot the sorted values from your dataset versus the random values.
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Figure 4.7: Normal probability plot of birth weights.

For large datasets, this method works well. For smaller datasets, you can
improve it by generating m(n+1) − 1 values from a normal distribution,
where n is the size of the dataset and m is a multiplier. Then select every
mth element, starting with the mth.

This method works with other distributions as well, as long as you know
how to generate a random sample.

Figure 4.7 is a quick-and-dirty normal probability plot for the birth weight
data.

The curvature in this plot suggests that there are deviations from a normal
distribution; nevertheless, it is a good (enough) model for many purposes.

Exercise 4.10 Write a function called NormalPlot that takes a sequence of
values and generates a normal probability plot. You can download a solu-
tion from http://thinkstats.com/rankit.py.

Use the running speeds from relay.py to generate a normal probability
plot. Is the normal distribution a good model for this data? You can down-
load a solution from http://thinkstats.com/relay_normal.py.

4.5 The lognormal distribution

If the logarithms of a set of values have a normal distribution, the values
have a lognormal distribution. The CDF of the lognormal distribution is
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Figure 4.8: CDF of adult weights (log transform).

the same as the CDF of the normal distribution, with log x substituted for
x.

CDFlognormal(x) = CDFnormal(log x)

The parameters of the lognormal distribution are usually denoted µ and σ.
But remember that these parameters are not the mean and standard devia-
tion; the mean of a lognormal distribution is exp(µ + σ2/2) and the standard
deviation is ugly5.

It turns out that the distribution of weights for adults is approximately log-
normal6.

The National Center for Chronic Disease Prevention and Health Promotion
conducts an annual survey as part of the Behavioral Risk Factor Surveil-
lance System (BRFSS)7. In 2008, they interviewed 414,509 respondents and
asked about their demographics, health and health risks.

Among the data they collected are the weights in kilograms of 398,484 re-
spondents. Figure 4.8 shows the distribution of log w, where w is weight in

5See http://wikipedia.org/wiki/Log-normal_distribution.
6I was tipped off to this possibility by a comment (without citation) at http://

mathworld.wolfram.com/LogNormalDistribution.html. Subsequently I found a paper
that proposes the log transform and suggests a cause: Penman and Johnson, “The Chang-
ing Shape of the Body Mass Index Distribution Curve in the Population,” Preventing
Chronic Disease, 2006 July; 3(3): A74. Online at http://www.ncbi.nlm.nih.gov/pmc/

articles/PMC1636707.
7Centers for Disease Control and Prevention (CDC). Behavioral Risk Factor Surveillance

System Survey Data. Atlanta, Georgia: U.S. Department of Health and Human Services,
Centers for Disease Control and Prevention, 2008.
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kilograms, along with a normal model.

The normal model is a good fit for the data, although the highest weights
exceed what we expect from the normal model even after the log transform.
Since the distribution of log w fits a normal distribution, we conclude that
w fits a lognormal distribution.

Exercise 4.11 Download the BRFSS data from http://thinkstats.com/

CDBRFS08.ASC.gz, and my code for reading it from http://thinkstats.

com/brfss.py. Run brfss.py and confirm that it prints summary statistics
for a few of the variables.

Write a program that reads adult weights from the BRFSS and generates
normal probability plots for w and log w. You can download a solution
from http://thinkstats.com/brfss_figs.py.

Exercise 4.12 The distribution of populations for cities and towns has been
proposed as an example of a real-world phenomenon that can be described
with a Pareto distribution.

The U.S. Census Bureau publishes data on the population of every incorpo-
rated city and town in the United States. I have written a small program
that downloads this data and stores it in a file. You can download it from
http://thinkstats.com/populations.py.

1. Read over the program to make sure you know what it does; then run
it to download and process the data.

2. Write a program that computes and plots the distribution of popula-
tions for the 14,593 cities and towns in the dataset.

3. Plot the CDF on linear and log-x scales so you can get a sense of the
shape of the distribution. Then plot the CCDF on a log-log scale to see
if it has the characteristic shape of a Pareto distribution.

4. Try out the other transformations and plots in this chapter to see if
there is a better model for this data.

What conclusion do you draw about the distribution of sizes for cities
and towns? You can download a solution from http://thinkstats.com/

populations_cdf.py.

Exercise 4.13 The Internal Revenue Service of the United States (IRS) pro-
vides data about income taxes at http://irs.gov/taxstats.
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One of their files, containing information about individual incomes for 2008,
is available from http://thinkstats.com/08in11si.csv. I converted it to
a text format called CSV, which stands for “comma-separated values;” you
can read it using the csv module.

Extract the distribution of incomes from this dataset. Are any of the con-
tinuous distributions in this chapter a good model of the data? You can
download a solution from http://thinkstats.com/irs.py.

4.6 Why model?

At the beginning of this chapter I said that many real world phenomena can
be modeled with continuous distributions. “So,” you might ask, “what?”

Like all models, continuous distributions are abstractions, which means
they leave out details that are considered irrelevant. For example, an ob-
served distribution might have measurement errors or quirks that are spe-
cific to the sample; continuous models smooth out these idiosyncrasies.

Continuous models are also a form of data compression. When a model fits
a dataset well, a small set of parameters can summarize a large amount of
data.

It is sometimes surprising when data from a natural phenomenon fit a con-
tinuous distribution, but these observations can lead to insight into physical
systems. Sometimes we can explain why an observed distribution has a par-
ticular form. For example, Pareto distributions are often the result of gen-
erative processes with positive feedback (so-called preferential attachment
processes: see http://wikipedia.org/wiki/Preferential_attachment.).

Continuous distributions lend themselves to mathematical analysis, as we
will see in Chapter 6.

4.7 Generating random numbers

Continuous CDFs are also useful for generating random numbers. If there
is an efficient way to compute the inverse CDF, ICDF(p), we can generate
random values with the appropriate distribution by choosing from a uni-
form distribution from 0 to 1, then choosing
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x = ICDF(p)

For example, the CDF of the exponential distribution is

p = 1− e−λx

Solving for x yields:

x= −log (1 − p) / λ

So in Python we can write

def expovariate(lam):

p = random.random()

x = -math.log(1-p) / lam

return x

I called the parameter lam because lambda is a Python keyword. Most im-
plementations of random.random can return 0 but not 1, so 1 − p can be 1
but not 0, which is good, because log 0 is undefined.

Exercise 4.14 Write a function named weibullvariate that takes lam and k

and returns a random value from the Weibull distribution with those pa-
rameters.

4.8 Glossary
empirical distribution: The distribution of values in a sample.

continuous distribution: A distribution described by a continuous func-
tion.

interarrival time: The elapsed time between two events.

error function: A special mathematical function, so-named because it
comes up in the study of measurement errors.

normal probability plot: A plot of the sorted values in a sample versus the
expected value for each if their distribution is normal.

rankit: The expected value of an element in a sorted list of values from a
normal distribution.

model: A useful simplification. Continuous distributions are often good
models of more complex empirical distributions.
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corpus: A body of text used as a sample of a language.

hapaxlegomenon: A word that appears only once in a corpus. It appears
twice in this book, so far.


